20 research outputs found

    A classifier driven approach to find biomarkers for affective disorders from transcription profiles in blood

    Get PDF
    Gene expression profiles in blood are increasingly being used to identify biomarkers for different affective disorders. We have selected a set of 29 genes to generate expression profiles for healthy control subjects as well as for patients diagnosed with acute post-traumatic stress disorder (PTSD) and with borderline personality disorder (BPD). Measurements were performed by quantitative polymerase chain reaction (qPCR). Using the actual data in an anonym-ous form we constructed a series of artificial data sets with known gene expression profiles. These sets were used to test 14 classification algorithms and feature selection methods for their ability to identify the correct expression patterns. Application of the three most effective algorithms to the actual expression data showed that control subjects can be dis-tinguished from BPD patients based on differential expression levels of the gene transcripts Gi2, GR and MAPK14, targets that may have links to stress related diseases. Controls can also be distinguished from acute PTSD patients by differential expression levels of the transcripts for ERK2 and RGS2 that are known to be associated with mood disord-ers and social anxiety. We conclude that it is possible to identify informative transcription profiles in blood samples from individuals with affective disorders

    Large meta-analysis of genome-wide association studies identifies five loci for lean body mass

    Get PDF
    Lean body mass, consisting mostly of skeletal muscle, is important for healthy aging. We performed a genome-wide association study for whole body (20 cohorts of European ancestry with n = 38,292) and appendicular (arms and legs) lean body mass (n = 28,330) measured using dual energy X-ray absorptiometry or bioelectrical impedance analysis, adjusted for sex, age, height, and fat mass. Twenty-one single-nucleotide polymorphisms were significantly associated with lean body mass either genome wide (p < 5 x 10(-8)) or suggestively genome wide (p < 2.3 x 10(-6)). Replication in 63,475 (47,227 of European ancestry) individuals from 33 cohorts for whole body lean body mass and in 45,090 (42,360 of European ancestry) subjects from 25 cohorts for appendicular lean body mass was successful for five single-nucleotide polymorphisms in/ near HSD17B11, VCAN, ADAMTSL3, IRS1, and FTO for total lean body mass and for three single-nucleotide polymorphisms in/ near VCAN, ADAMTSL3, and IRS1 for appendicular lean body mass. Our findings provide new insight into the genetics of lean body mass
    corecore